The major bones of the leg are the femur (thigh bone), tibia (shin bone), and adjacent fibula, and these are all long bones. The patella (kneecap) is the sesamoid bone in front of the knee. Most of the leg skeleton has bony prominences and margins that can be palpated and some serve as anatomical landmarks that define the extent of the leg. These landmarks are the anterior superior iliac spine, the greater trochanter, the superior margin of the medial condyle of tibia, and the medial malleolus.[14] Notable exceptions to palpation are the hip joint, and the neck and body, or shaft of the femur.
Usually, the large joints of the lower limb are aligned in a straight line, which represents the mechanical longitudinal axis of the leg, the Mikulicz line. This line stretches from the hip joint (or more precisely the head of the femur), through the knee joint (the intercondylar eminence of the tibia), and down to the center of the ankle (the ankle mortise, the fork-like grip between the medial and lateral malleoli). In the tibial shaft, the mechanical and anatomical axes coincide, but in the femoral shaft they diverge 6°, resulting in the femorotibial angle of 174° in a leg with normal axial alignment. A leg is considered straight when, with the feet brought together, both the medial malleoli of the ankle and the medial condyles of the knee are touching. Divergence from the normal femorotibial angle is called genu varum if the center of the knee joint is lateral to the mechanical axis (intermalleolar distance exceeds 3 cm), and genu valgum if it is medial to the mechanical axis (intercondylar distance exceeds 5 cm). These conditions impose unbalanced loads on the joints and stretching of either the thigh's adductors and abductors.[15]
The angle of inclination formed between the neck and shaft of the femur (collodiaphysial angle) varies with age—about 150° in the newborn, it gradually decreases to 126–128° in adults, to reach 120° in old age. Pathological changes in this angle result in abnormal posture of the leg: a small angle produces coxa vara and a large angle coxa valga; the latter is usually combined with genu varum, and coxa vara leads genu valgum. Additionally, a line drawn through the femoral neck superimposed on a line drawn through the femoral condyles forms an angle, the torsion angle, which makes it possible for flexion movements of the hip joint to be transposed into rotary movements of the femoral head. Abnormally increased torsion angles result in a limb turned inward and a decreased angle in a limb turned outward; both cases resulting in a reduced range of a person's mobility.[16] Evolution has provided the human body with two distinct features: the specialization of the upper limb for visually guided manipulation and the lower limb's development into a mechanism specifically adapted for efficient bipedal gait.[10] While the capacity to walk upright is not unique to humans, other primates can only achieve this for short periods and at a great expenditure of energy.[11]
The human adaption to bipedalism has also affected the location of the body's center of gravity, the reorganization of internal organs, and the form and biomechanism of the trunk.[12] In humans, the double S-shaped vertebral column acts as a great shock-absorber which shifts the weight from the trunk over the load-bearing surface of the feet. The human legs are exceptionally long and powerful as a result of their exclusive specialization for support and locomotion—in orangutans the leg length is 111% of the trunk; in chimpanzees 128%, and in humans 171%. Many of the leg's muscles are also adapted to bipedalism, most substantially the gluteal muscles, the extensors of the knee joint, and the calf muscles.[13]In human anatomy, the lower leg is the part of the lower limb that lies between the knee and the ankle.[6] Anatomists restrict the term leg to this use, rather than to the entire lower limb.[7] The thigh is between the hip and knee and makes up the rest of the lower limb.[6] The term lower limb or lower extremity is commonly used to describe all of the leg.
The leg from the knee to the ankle is called the crus.[8] The calf is the back portion, and the tibia or shinbone together with the smaller fibula make up the front of the lower leg.[9]The human leg, in the general word sense, is the entire lower limb[1] of the human body, including the foot, thigh or sometimes even the hip or gluteal region. However, the definition in human anatomy refers only to the section of the lower limb extending from the knee to the ankle, also known as the crus[2][3] or, especially in non-technical use, the shank.[4] Legs are used for standing, and all forms of locomotion including recreational such as dancing, and constitute a significant portion of a person's mass. Female legs generally have greater hip anteversion and tibiofemoral angles, but shorter femur and tibial lengths than those in males.[5]
The five-rayed anterior limbs of terrestrial vertebrates can be derived phylogenetically from the pectoral fins of fish. Within the taxa of the terrestrial vertebrates, the basic pentadactyl plan, and thus also the fingers and phalanges, undergo many variations.[3]Morphologically the different fingers of terrestrial vertebrates are homolog. The wings of birds and those of bats are not homologous, they are analogue flight organs. However, the phalanges within them are homologous.[4]
Chimpanzees have lower limbs that are specialized for manipulation, and (arguably) have fingers on their lower limbs as well. In the case of Primates in general, the digits of the hand are overwhelmingly referred to as "fingers".[5][6] Primate fingers have both fingernails and fingerprints.[7]
Research has been carried out on the embryonic development of domestic chickens showing that an interdigital webbing forms between the tissues that become the toes, which subsequently regresses by apoptosis. If apoptosis fails to occur, the interdigital skin remains intact. Many animals have developed webbed feet or skin between the fingers from this like the Wallace's flying frog.[8][9][10]Usually humans have five digits,[11] the bones of which are termed phalanges,[2] on each hand, although some people have more or fewer than five due to congenital disorders such as polydactyly or oligodactyly, or accidental or intentional amputations. The first digit is the thumb, followed by index finger, middle finger, ring finger, and little finger or pinkie. According to different definitions, the thumb can be called a finger, or not.
English dictionaries describe finger as meaning either one of the five digits including the thumb, or one of the four excluding the thumb (in which case they are numbered from 1 to 4 starting with the index finger closest to the thumbEvolution has provided the human body with two distinct features: the specialization of the upper limb for visually guided manipulation and the lower limb's development into a mechanism specifically adapted for efficient bipedal gait.[10] While the capacity to walk upright is not unique to humans, other primates can only achieve this for short periods and at a great expenditure of energy.[11]
The human adaption to bipedalism has also affected the location of the body's center of gravity, the reorganization of internal organs, and the form and biomechanism of the trunk.[12] In humans, the double S-shaped vertebral column acts as a great shock-absorber which shifts the weight from the trunk over the load-bearing surface of the feet. The human legs are exceptionally long and powerful as a result of their exclusive specialization for support and locomotion—in orangutans the leg length is 111% of the trunk; in chimpanzees 128%, and in humans 171%. Many of the leg's muscles are also adapted to bipedalism, most substantially the gluteal muscles, the extensors of the knee joint, and the calf muscles.[13]
The thumb (connected to the trapezium) is located on one of the sides, parallel to the arm.
The palm has five bones known as metacarpal bones, one to each of the five digits. Human hands contain fourteen digital bones, also called phalanges, or phalanx bones: two in the thumb (the thumb has no middle phalanx) and three in each of the four fingers. These are the distal phalanx, carrying the nail, the middle phalanx, and the proximal phalanx. Joints are formed wherever two or more of these bones meet. Each of the fingers has three joints:
metacarpophalangeal joint (MCP) – the joint at the base of the finger
proximal interphalangeal joint (PIP) – the joint in the middle of the finger
distal interphalangeal joint (DIP) – the joint closest to the fingertip.
Sesamoid bones are small ossified nodes embedded in the tendons to provide extra leverage and reduce pressure on the underlying tissue. Many exist around the palm at the bases of the digits; the exact number varies between different people.
The articulations are: interphalangeal articulations between phalangeal bones, and metacarpophalangeal joints connecting the phalanges to the metacarpal bones. E
The five-rayed anterior limbs of terrestrial vertebrates can be derived phylogenetically from the pectoral fins of fish. Within the taxa of the terrestrial vertebrates, the basic pentadactyl plan, and thus also the fingers and phalanges, undergo many variations.[3]Morphologically the different fingers of terrestrial vertebrates are homolog. The wings of birds and those of bats are not homologous, they are analogue flight organs. However, the phalanges within them are homologous.[4]
Chimpanzees have lower limbs that are specialized for manipulation, and (arguably) have fingers on their lower limbs as well. In the case of Primates in general, the digits of the hand are overwhelmingly referred to as "fingers".[5][6] Primate fingers have both fingernails and fingerprints.[7]
Research has been carried out on the embryonic development of domestic chickens showing that an interdigital webbing forms between the tissues that become the toes, which subsequently regresses by apoptosis. If apoptosis fails to occur, the interdigital skin remains intact. Many animals have developed webbed feet or skin between the fingers from this like the Wallace's flying frog.[8][9][10]Usually humans have five digits,[11] the bones of which are termed phalanges,[2] on each hand, although some people have more or fewer than five due to congenital disorders such as polydactyly or oligodactyly, or accidental or intentional amputations. The first digit is the thumb, followed by index finger, middle finger, ring finger, and little finger or pinkie. According to different definitions, the thumb can be called a finger, or not.
English dictionaries describe finger as meaning either one of the five digits including the thumb, or one of the four excluding the thumb (in which case they are numbered from 1 to 4 starting with the index finger closest to the thumbEvolution has provided the human body with two distinct features: the specialization of the upper limb for visually guided manipulation and the lower limb's development into a mechanism specifically adapted for efficient bipedal gait.[10] While the capacity to walk upright is not unique to humans, other primates can only achieve this for short periods and at a great expenditure of energy.[11]
The human adaption to bipedalism has also affected the location of the body's center of gravity, the reorganization of internal organs, and the form and biomechanism of the trunk.[12] In humans, the double S-shaped vertebral column acts as a great shock-absorber which shifts the weight from the trunk over the load-bearing surface of the feet. The human legs are exceptionally long and powerful as a result of their exclusive specialization for support and locomotion—in orangutans the leg length is 111% of the trunk; in chimpanzees 128%, and in humans 171%. Many of the leg's muscles are also adapted to bipedalism, most substantially the gluteal muscles, the extensors of the knee joint, and the calf muscles.[13]
The thumb (connected to the trapezium) is located on one of the sides, parallel to the arm.
The palm has five bones known as metacarpal bones, one to each of the five digits. Human hands contain fourteen digital bones, also called phalanges, or phalanx bones: two in the thumb (the thumb has no middle phalanx) and three in each of the four fingers. These are the distal phalanx, carrying the nail, the middle phalanx, and the proximal phalanx. Joints are formed wherever two or more of these bones meet. Each of the fingers has three joints:
metacarpophalangeal joint (MCP) – the joint at the base of the finger
proximal interphalangeal joint (PIP) – the joint in the middle of the finger
distal interphalangeal joint (DIP) – the joint closest to the fingertip.
Sesamoid bones are small ossified nodes embedded in the tendons to provide extra leverage and reduce pressure on the underlying tissue. Many exist around the palm at the bases of the digits; the exact number varies between different people.
The articulations are: interphalangeal articulations between phalangeal bones, and metacarpophalangeal joints connecting the phalanges to the metacarpal bones. Ee
Download NovelToon APP on App Store and Google Play